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1. Introduction

1.1. Historical Development. If P is any poset, then the set AutP of all automorphisms of P

forms a group under function composition. It is natural to wonder about the other direction. That

is, given a group G, when is G the automorphism group of some poset? If G is a group and it is

isomorphic to AutP for some poset P, we will say G is realizable via P . In 1946, G. Birkhoff proved

in [3] that if G is a finite group of order n, then G is realizable via a poset P with n2 + n points. In

1972, M. Thornton showed in [5] that if G is a group of order n with a generating set of r elements,

then G can be realized via a poset P with n(2r + 1) points. In 2009, J. Barmak and E. Minian

improved Thornton’s result in [2], where they show that such groups G can be realized with n(r+2)

points. In 2020, Barmak dramatically improved Birkhoff’s result, proving that G can be realized via

a poset with just 4n points (see [1]). In the same paper, Barmak made a fascinating remark that in

an apparently not well-known German paper authored by R. Frucht in 1939, the author obtained

the 2009 Barmak-Minian bound of n(r+2). The results of Birkhoff, Thornton, and Barmak-Minian,

were all independently obtained and proved, however.

1.2. Connections from Order Theory to Algebraic Geometry and Group Theory. Study-

ing automorphisms of posets is interesting enough in its own right, but there are deep connections to

other realms of mathematics, including algebraic geometry and commutative algebra. These connec-

tions add even more importance to understanding posets in abstraction from the point-of-view of au-

tomorphisms. If R is a commutative ring with 1, then the set SpecR = {P : P is a prime ideal of R}
can be equipped with a partial order: P ≤ Q ⇐⇒ P ⊆ Q. While it is known which posets arise

as the spectrum of a commutative ring [4], it is not known which posets arise as the spectrum of

a commutative Noetherian ring [6]. If σ is a ring automorphism of a Noetherian ring R (or any

commutative ring with 1), then σ induces a poset automorphism of (SpecR,⊆). In particular, there

is a relationship between the automorphism group of AutR, the set of automorphisms of the ring

R, and Aut SpecR. In particular, if one wishes to understand which posets can arise as the spec-

trum of a commutative Noetherian ring, it is useful to consider what limitations might exist on the

automorphism groups of their prime ideal spectra.

Another interesting example occurs when one studies the subgroup lattice of a group G. Like

the prime ideal spectra referred to above, the set S of all subgroups of a fixed group G is a poset

under subset inclusion. An important question that arises when studying G is which, if any, of its

proper, nontrivial subgroups are normal. If g ∈ G, then the conjugation map σg : G → G given by

σg(x) = gxg−1 is an automorphism of G. So it induces a poset automorphism of S. In particular,

when viewing S as a poset, the normal subgroups of G correspond exactly to those points in S that

have trivial orbit under the action of the inner automorphisms of G on S. Put another way, if P is
1
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a poset that is known to be the subgroup lattice of a group G, and there is a point N ∈ P that is

fixed by every automorphism of the poset P, then N must correspond to a normal subgroup of G.

In particular, by understanding the automorphism groups of posets, which includes a study of

which groups are realizable, one can potentially make interesting statements about related algebraic

and algebro-geometric structures.

1.3. Summary of Results. In this report, we tackle certain infinite groups and study their realiz-

ability. Specifically, after establishing some preliminaries and notation, we study finitely-generated

abelian groups and free groups, and we obtain the following results concerning their realizability:

Theorem 1.1. Every finitely generated abelian group is realizable.

Theorem 1.2. Every finitely generated free group is a subgroup of the automorphism group of

some poset.

We also study β(G), defined in [1], to be the least number of points needed in a nonempty poset

P to realize G as AutP. Specifically, we show:

Proposition 1.3. If G and H are finite groups, then β(G×H) ≤ β(G) + β(H) and β(Sn) = n for

all n ∈ N.1

Finally, we study how to count automorphisms with Python by associating, to any finite poset

P, a useful matrix C that we use to count automorphisms of P.

2. Definitions and Preliminaries

Definition 2.1. A poset (X,≤X) is a set X with a relation ≤X such that for all x, y, z ∈ X, we

have x ≤X x; x ≤X y and y ≤X x =⇒ y = x; and x ≤X y and y ≤X z =⇒ x ≤X z.

Definition 2.2. If P is a poset and x, y ∈ P, we say y covers x in P if x <P y and for all z ∈ P

such that x ≤ z ≤ y, we have z = x or z = y.

Definition 2.3. If P is a poset and Q ⊆ P, we say Q is a subposet of P if it is a poset and x ≤Q y

iff x ≤P y.

Definition 2.4. A chain C in a poset P is a subset of P such that for all x, y ∈ C we have x ≤P y

or y ≤P x. If C is a finite chain, we define its length ℓ(C) to be |C| − 1.

Definition 2.5. If X is a poset, we define its dimension to be sup{ℓ(C) : C is a chain in X}. If

x ∈ X is a point, we define htX(x) := dimLX(x) and we define cohtX x := dimGX(x).

Definition 2.6. A poset P is connected if for all x, y ∈ P there exists a sequence (x = α1, α2, ..., αn =

y) of points αi ∈ P such that αi is comparable to αi+1 for all 1 ≤ i < n.

Definition 2.7. Let {Pi}i∈I be a collection of posets with pairwise-disjoint sets of points. The

disjoint union P := ⊔Pi is a poset with order x ≤P y if and only if x ≤Pi
y for some i ∈ I.

1The first part of Proposition 1.3 was, unbeknownst to us, mentioned in a question on Math StackExchange by

user “h4tter” in 2019 (see https://math.stackexchange.com/q/3123314). Our independently-obtained construction

for 1.3 is very slightly different than what is in the StackExchange question, but it does have a lot of similarities.
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Definition 2.8. We say f : P → Q is a poset map if for all x, y ∈ P , we have x ≤P y =⇒ f(x) ≤Q

f(y). A poset map f : P → Q is said to be order-reflexive if for all x, y ∈ P , whenever f(x) ≤Q f(y),

we have x ≤P y. A surjective, order-reflexive map f : P → Q is called a poset isomorphism. An

isomorphism f : P → P is called an automorphism. The set AutP of all automorphisms from P

onto P is a group under composition.

Definition 2.9. A group G is realizable if there exists a poset P such that AutP = G.

Definition 2.10. If G is a finite group, define β(G) = min{|P | : P is a poset withAutP ∼= G}.

Definition 2.11. If P is a poset and p ∈ P, we define the orbit of p to be the set {f(p) : f ∈ AutP}.

Definition 2.12. If P is a poset, we say K ⊆ P is a connected component of P if K is a subposet

of P and it is maximal, with respect to set-theoretic inclusion of subposets, with respect to being

connected.

3. Results

3.1. On Finitely Generated Abelian Groups and Free Groups.

Lemma 3.1. If f : P → Q is an isomorphism and K is a connected component of P, then f(K) is

a connected component of Q. In particular, if f ∈ AutP, then f carries connected components to

connected components.

Proof. Let x, y ∈ f(K) and write x = f(x′) and y = f(y′) for x′, y′ ∈ K. Since K is connected, there

is a path (x′, x1, . . . , xn, y
′) in K from x′ to y′. So (f(x′), . . . , f(y′)) is a path in f(K) from x to y.

So f(K) is connected if K is. If f(K) ⊆ J for some connected J in Q, then f−1(J) must also be

connected in P and contain K. So f−1(J) = K by maximality of K. Thus, f(K) = J since f is a

bijection. □

Lemma 3.2. Let P1, . . . , Pk be a sequence connected, pairwise disjoint and pairwise non-isomorphic

posets. Let P := ⊔k
i=1Pi be the disjoint union of the Pi. Then AutP ∼=

∏k
i=1 Pi.

Proof. Let f ∈ AutP. If 1 ≤ i ≤ k, then f(Pi) is a connected component of P by Lemma 3.1. So

f(Pi) = Pj for some j since the set of connected components of P is precisely {P1, . . . , Pk}. Since
f is an automorphism of P, we have Pi

∼= f(Pi) = Pj , so i = j by assumption. In particular,

f |Pi
∈ AutPi. For simplicity, if f ∈ AutP, define fi ∈ AutPi as fi := f |Pi

.

The map φ : AutP →
∏k

i=1 AutPi via φ(f) = (f1, . . . , fk) is clearly an injective mapping

of groups, and if (g1, . . . , gk) ∈
∏k

i=1 AutPi, then g := ∪k
i=1gi is an automorphism of P with

φ(g) = (g1, . . . , gk), so φ is surjective hence an isomorphism. □

If P is any poset, it is possible to add a “single minimal node” to the bottom of P by simply

setting Q = P ∪ {α} where α /∈ P, and declaring α <Q p for all p ∈ P and of course α ≤Q α.

Lemma 3.3. If P is any poset and Q = P ∪ {α} where α is such that α <Q p for all p ∈ P, then

AutQ ∼= AutP.

Proof. Every automorphism of Q must fix α so the restriction map f → f |P is an isomorphism from

AutQ onto AutP. □

Theorem 3.4. Every finitely generated abelian group is the automorphism group of a poset.
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Proof. Let G be a finitely generated abelian group, and write G = Zr × T, where T is a finite group

and r > 0 is a positive integer. Define P0 := Z with the usual order. Let n > 0, and suppose Pm

has been defined for 0 ≤ m < n. Define Pn = Pn−1 ∪ {α}, where α < p for all p ∈ Pn−1. Let Q be a

poset with automorphism group T, which exists by [2]. Consider P = ⊔r
i=1Pi ⊔Q. Now Pi ̸∼= Pj for

i ̸= j because each Pm has precisely m points of finite height by construction. Moreover, Q ̸∼= Pi

for any 1 ≤ i ≤ r because AutQ is finite while AutPi
∼= Z is infinite. In particular, by Lemma 3.2,

AutP = Z× · · · × Z× T = G. □

Let S = {g1, . . . , gn} be a nonempty, finite set, and let FS be the free group on S. Let U =

S ∪ {1FS
}. For x, y ∈ FS , declare x ≤FS

y if and only if y = xh1 · · ·hk for some h1, . . . , hk ∈ U.

Proposition 3.5. With the above construction, (FS ,≤FS
) is a poset.

Proof. For simplicity, write F = FS . If x ∈ F, then x = x · 1F , so x ≤F x and ≤F is reflexive.

If x ≤F y and y ≤F x, then y = xh1 · · ·hk and x = yt1 · · · ts for some h1, . . . , ts ∈ U. Therefore,

1 = h1 · · ·hkt1 · · · ts, so hi, tj = 1 for all i, j since each hi, tj is an element of S or is the identity.

In particular, x = y. Lastly, if x ≤F y and y ≤F z, then y = xh1 · · ·hk and z = yr1 · · · rl, so
z = xh1 · · ·hkr1 · · · rl. That is, x ≤F z. □

Theorem 3.6. With FS as above, we have FS ≤ AutFS as groups. In particular, every finitely

generated free group is a subgroup of the automorphism group of some poset.

Proof. As above, write F = FS . Let x ∈ F, and define σ : F → F as σx(z) = xz. If a ≤F b, then

b = ah1 · · ·hk for some hi ∈ U. So xb = xah1 · · ·hk and thus xa ≤F xb. So σx is a poset map.

Conversely, if xa ≤F xb, then xb = xah1 · · ·hk so b = ah1 · · ·hk by the cancellation law. Therefore,

a ≤F b and σx is order-reflexive. Finally, if w ∈ F, then w = xx1−w = σx(x
−1w), so σx is surjective.

Therefore, σx ∈ AutF. The map from F to AutF given by x → σx is an injective homomorphism.

So F ≤ AutF as groups. □

3.2. On Beta Values for Various Finite Groups. Recall that if G is a finite group, then β(G)

is the smallest number of points needed in a nonempty poset P to realize G via P.

Proposition 3.7. We have β(Sn) = n for all n ∈ N.

Proof. Let P be a poset with AutP = Sn, and write k = |P | > 0. Every automorphism of P is a

bijection of P with itself, so AutP = Sn ≤ SP = Sk. Therefore, n! ≤ k! so n ≤ k. So β(Sn) ≥ n. If

Q is an antichain with n points, then AutQ ∼= Sn, so there is a poset with exactly n points whose

automorphism group is Sn. Thus, β(Sn) = n. □

If P and Q are posets with disjoint sets of points, define PQ := P ∪Q with the following order:

x ≤PQ y if and only if x ≤P y or x ≤Q y or x ∈ P and y ∈ Q.

Lemma 3.8. If P and Q are finite posets, then AutPQ = AutP ×AutQ.

Proof. Let n = dimP and m = dimQ, and if X is any poset, let HX
i be the set of points in X whose

height is i in X. We claim P = ∪n
i=0H

PQ

i , and Q = ∪n+m
j=n+1H

PQ

j . If p ∈ P, then htPQ p ≥ htP p by

definition. If x ≤PQ p, then we must have x ∈ P by definition, so htPQ p ≤ htP p. In particular,

P ⊆ ∪n
i=0H

PQ

i . If p /∈ P, then p ∈ Q. Let r ∈ P be a point whose height is n in P. Then r < p by

definition, so ht p ≥ n + 1. That is, p /∈ ∪n
i=0H

PQ

i . So P = ∪n
i=0H

PQ

i . A similar argument shows

Q = ∪n+m
j=n+1H

PQ

j , so in fact dimPQ = n+m.
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Let f ∈ AutPQ. Since f is an automorphism, we have f(HPQ

i ) = HPQ

i for all i. In particular, f

restricts to an automorphism of the set of all the points in PQ whose height is at most n. That is, f

restricts to an automorphism of P. Likewise, f restricts to an automorphism of Q. So we get a map

from AutPQ to AutP×AutQ via f → (f |P , f |Q). It is clearly an injective homomorphism of groups.

To see why it is surjective, suppose (g, h) ∈ AutP ×AutQ, and define f = g ∪ h. Suppose x <PQ y,

and x ∈ P and y ∈ Q. Then f(x) = g(x) ∈ P and f(y) = h(y) ∈ Q. So f(x) = g(x) <PQ h(y) = f(y)

by definition of the order on PQ. Conversely, if f(x) <PQ f(y), and f(x) ∈ P and f(y) ∈ Q, then

f(x) = g(x′) for x′ ∈ P and f(y) = h(y′) for y′ ∈ Q. So x′ <PQ y′ by definition. Surjectivity of f is

clear. So f is an automorphism of PQ. □

Proposition 3.9. If G and H are finite groups, then β(G×H) ≤ β(G) + β(H).

Proof. Suppose G ̸∼= H, and let PG be a poset with β(G) points such that AutPG
∼= G, and let PH

be a poset with β(H) points such that AutPH
∼= H. Set P = PG ⊔ PH . Then PG ̸∼= PH because

G ̸∼= H. So AutP = AutPG × AutPH = G ×H by Lemma 3.2. Moreover, |P| = β(G) + β(H). So

β(G×H) ≤ β(G) + β(H).

In the other case, where G ∼= H, consider PPH

G . By Lemma 3.8, AutPPH

G
∼= AutG × AutH and

of course |PPH

G | = β(G) + β(H). □

Remark. We could have taken PPH

G from the outset, but we wished to show an alternative

approach to arguing with disjoint unions, which, from a technical point of view, is at least an easier

order to establish. Moreover, the dimension of PG⊔PH is the larger of dimPG and dimPH , whereas

with PPH

G , the dimension is the sum of the dimensions of PG and PH .

3.3. Counting Automorphisms with Python. To count the automorphisms of a given poset

P, we developed an algorithm in Python that works by first generating the symmetric group SP

and then checking which elements of SP are automorphisms of P. To check if the elements of the

symmetric group are automorphisms, the program uses a matrix representation of P. Specifically, if

we enumerate P = {0, 1, . . . , n} for some n ≥ 1, we define a matrix C = [cij ] where cij = 1 if and

only if i = j or node j covers node i in the poset. Otherwise, set cij = 0. Given a bijection f ∈ SP ,

the program applies f to C by swapping rows and columns based on f to form matrix Df = [dij ]

given by dij = cf(i)f(j) for all 0 ≤ i, j ≤ n. With this setup, we have:

Theorem 3.10. Let P = {0, 1, . . . , n} be a poset, and let f ∈ SP . Then f ∈ AutP if and only if

Df = C.

Proof. Let f ∈ AutP, and let i, j ∈ P be distinct points. Either j covers i in P or not. If j covers

i, then f(j) covers f(i) since f is an automorphism. Therefore, dij = cf(i)f(j) = 1. Since j covers i,

cij = 1. So cij = dij . If j does not cover i, then f(j) cannot cover f(i), so cij = 0 = cf(i)f(j) = dij .

So Df = C.

Conversely, if Df = C, we claim f ∈ AutP. Suppose i ≤P j, and write i := i0 <P i1 <P

i2 <P . . . <P ik := j, where each ir is covered by ir+1. Then cirir+1
= 1 for all 1 ≤ r < k, so

1 = cirir+1
= dirir+1

= cf(ir)f(ir+1) for all such r. Therefore, f(ir+1) covers f(ir) for all r and so

f(i) <P f(j) by transitivity of the relation on P. That is, f is a poset map. Conversely, suppose

f(i) <P f(j). As before, f(i) := t0 < t1 <P t2 <P . . . <P ts := f(j) for some ti ∈ P where each

tw+1 covers tw. Since f is surjective, tw = f(iw) for some iw ∈ P, so f(i0) <P f(i1) <P . . . <P f(is)
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and since Df = C, we have ciwiw+1 = diwiw+1 = cf(iw)f(iw+1) = 1 for all w. So iw+1 must cover iw

for all w. So i <P j, which implies that f is order-reflexive. Since f is surjective, f ∈ AutP. □

Hence, the program generates all of the bijections that result in the original matrix are automor-

phisms on the poset. The program then counts all such bijections and returns them to the user.

The code is available on the GitHub repository at rb.gy/cnzpfc

4. Future Work

There is much work left to do. First, we would understand β(Zn) for all cyclic groups Zn, or at

least a wider class than is known. Perhaps the easiest such class is cyclic groups of the form Zpk

where p is a prime number and k > 0 is an integer. In 2020, Barmak provided some upper and

lower-bounds of β(G) for these groups G. Specifically, Barmak showed in [1]:

Theorem 4.1. (Barmak, ’20) Let p be a prime number, and let k ≥ 2 be an integer.

(i) β(Z2) = 2.

(ii) 2k+1 ≤ β(Z2k) ≤ 2k+1 + 12.

(iii) 2pk ≤ β(Zpk) ≤ 2pk + 3p, if p = 3, 5.

(iv) 2pk ≤ β(Zpk) ≤ 2pk + p, if p ≥ 7.

Barmak’s work along with computational data leads us to the following conjecture:

Conjecture 4.2. We have β(Zpk) = 2pk + p for all primes p ≥ 7 and k ≥ 1.

In addition, we also wish to continue our efforts to discover more infinite groups that arise as

automorphism groups of posets. Specifically, we believe all finitely generated free groups are real-

izable. We also wish to explore what happens with the Frucht-Barmak-Minian construction if you

replace the finite group G with an infinite one.

Lastly, while the Python code in the previous section served our internal purposes excellently, we

have a strong interest in making the code as efficient as possible by using facts about automorphisms.

We already know that every automorphism must preserve height, and that greatly narrows the search

from all bijections to only a relative handful. But there are still many automorphisms to check for

a given poset P. Even with this consideration, there are still as many as
∏k

i=0 ni! automorphisms of

P, where ni is the number of points in P whose height is i, and k = dimP.
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